Schulinterner Lehrplan (G9) am Kaiser-Karls-Gymnasium – Sekundarstufe I

Physik

(Fassung vom 15.08.2021)

Inhalt

1	Rahmenbedingungen der fachlichen Arbeit		
2		Entscheidungen zum Unterricht	
	2.1	Unterrichtsvorhaben	∠
	2.2	Grundsätze der fachmethodischen und fachdidaktischen Arbeit	24
	2.3	Grundsätze der Leistungsbewertung und Leistungsrückmeldung	25
	2.4	Lehr- und Lernmittel	26
3	En	tscheidungen zu fach- oder unterrichtsübergreifenden Fragen	27
4	4 Qualitätssicherung und Evaluation		

1 Rahmenbedingungen der fachlichen Arbeit

Fachliche Bezüge zum Leitbild der Schule

In unserem Schulprogramm ist als wesentliches Ziel der Schule beschrieben, die Lernenden als Individuen mit jeweils besonderen Fähigkeiten, Stärken und Interessen in den Blick zu nehmen. Es ist ein wichtiges Anliegen, durch gezielte Unterstützung des Lernens die Potenziale jeder Schülerin und jedes Schülers in allen Bereichen optimal zu entwickeln. In einem längerfristigen Entwicklungsprozess arbeitet das Fach Physik daran, die Bedingungen für erfolgreiches und individuelles Lernen zu verbessern. Um dieses Ziel zu erreichen, wird eine gemeinsame Vorgehensweise aller Fächer des Lernbereichs angestrebt. Durch eine verstärkte Zusammenarbeit und Koordinierung der Fachbereiche werden Bezüge zwischen Inhalten der Fächer hergestellt (Beispiel: Das elektrifizierte Zimmer in Klasse 6 in enger Zusammenarbeit mit dem Fach Kunst). Im Sinne unseres fächerübergreifenden Hausaufgabenkonzepts (vgl. Schulprogramm) werden Hausaufgaben in der Sekundarstufe I im Fachunterricht Physik zum intelligenten Üben genutzt. Eine besondere Möglichkeit wird im Fach Physik durch die Durchführung kleinerer Experimente zuhause geboten.

Fachliche Bezüge zu den Rahmenbedingungen des schulischen Umfelds

Das Kaiser-Karls-Gymnasium bietet den Schülerinnen und Schülern als MINT-EC-Schule herausragende Möglichkeiten im MINT-Bereich. Mit dem schuleigenen MINT-Kurs-Konzept können bereits in der Sekundarstufe I freiwillige, zusätzliche Förderkurse in der Sekundarstufe I gewählt werden, die auf ein projektbezogenes, selbstständiges Arbeiten im MINT-Bereich hinführen und für kleinere und größere MINT-Projekte begeistern. Die MINT-Kurse stellen ein individuelles Förderkonzept im MINT-Bereich dar. In Verbindung mit dem sprachlichen Profil der Schule bietet das Kaiser-Karls-Gymnasium in den bilingualen Klassen einen modularen bilingualen Physikunterricht auf Englisch in den Jahrgangsstufen 8, 9 und 10 an.

Fachliche Bezüge zu schulischen Standards zum Lehren und Lernen

Mit dem zusätzlichen MINT-Kurs-Konzept erhalten die Schülerinnen und Schüler die Möglichkeit sich durchgehend mit physikalischen Fragestellungen auseinanderzusetzen und damit auch über die Jahrgangsstufe 7 (in der sonst kein Fachunterricht Physik stattfindet) hinweg spannenden Aspekten und Projekten im MINT-Bereich zu widmen.

Fachliche Zusammenarbeit mit außerunterrichtlichen Partnern

Durch die Nähe zur RWTH Aachen University werden vielfältige Angebote im MINT-Bereich genutzt. Dazu gehören die Möglichkeiten sich Realexperimente und Lernzirkel vom I. Physikalischen Institut IA auszuleihen oder vor Ort im Physikzentrum das SCIphyLAB – das Schülerlabor Physik – zu besuchen. Mit unseren Oberstufenschülerinnen und Schülern nutzen wir regelmäßig die hochkarätigen Laborausstattungen der physikalischen Praktika und bereiten unsere Kurse direkt am Realexperiment auf die Abiturinhalte vor.

2 Entscheidungen zum Unterricht

2.1 Unterrichtsvorhaben

In der nachfolgenden Übersicht über die *Unterrichtsvorhaben* wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen. Die Reihenfolge einzelner Themen darf dabei variiert werden. Es soll verdeutlicht werden, welches Wissen und welche Fähigkeiten in den jeweiligen Unterrichtsvorhaben besonders gut zu erlernen sind und welche Aspekte deshalb im Unterricht hervorgehoben thematisiert werden sollten. Unter den weiteren Vereinbarungen des Übersichtsrasters werden u.a. Möglichkeiten im Hinblick auf inhaltliche Fokussierungen sowie interne und externe Verknüpfungen ausgewiesen. Bei Synergien und Vernetzungen bedeutet die Pfeilrichtung ←, dass auf Lernergebnisse anderer Bereiche zurückgegriffen wird (*aufbauend auf ...*), die Pfeilrichtung →, dass Lernergebnisse später fortgeführt werden (*grundlegend für ...*).

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der Schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Klassenfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

Projekte in den Jahrgangsstufen 8 und 9:

- In der Jahrgangsstufe 8 werden verschiedene optische Geräte wie ein Fernrohr oder andere Linsensysteme (z.B. mithilfe der in der Physiksammlung vorhandenen Optikkästen) gebaut und für verschiedene Anwendungen angepasst.
- In der Jahrgangsstufe 9 wird ein verbindliches Projekt zum Bau eines Elektromotors oder eines Generators durchgeführt.

	JAHRGANGSSTUFE 6.1			
Unterrichtsvorhaben (ca. 32 Ustd. im 1. HJ)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen	
6.1 Magnetismus – interessant und hilfreich Warum zeigt uns der Kompass die Himmelsrichtung? ca. 6 Ustd.	IF 2: Elektrischer Strom und Magnetismus Magnetische Kräfte und Felder: • Anziehende und abstoßende Kräfte • Magnetpole • magnetische Felder • Feldlinienmodell • Magnetfeld der Erde Magnetisierung: • Magnetisierbare Stoffe Modell der Elementarmagnete	 E3: Vermutung und Hypothese Vermutungen äußern E4: Untersuchung und Experiment Systematisches Erkunden E6: Modell und Realität Modelle zur Veranschaulichung K1: Dokumentation Felder skizzieren 	zur Schwerpunktsetzung Feld nur als Phänomen, erste Begegnung mit dem physikalischen Kraftbegriff zur Vernetzung → elektrisches Feld (IF 9) zu Synergien Erdkunde: Bestimmung der Himmelsrichtungen	
6.2 Wir messen Temperaturen Wie funktionieren unterschiedliche Thermometer? ca. 10 Ustd.	IF 1: Temperatur und Wärme Thermische Energie: Wärme, Temperatur und Temperaturmessung Wirkungen von Wärme: Wärmeausdehnung	 E2: Beobachtung und Wahrnehmung Beschreibung von Phänomenen E4: Untersuchung und Experiment Messen physikalischer Größen E6: Modell und Realität Modelle zur Erklärung K1: Dokumentation Protokolle nach vorgegebenem Schema Anlegen von Tabellen 	 zur Schwerpunktsetzung Einführung Modellbegriff Erste Anleitung zum selbstständigen Experimentieren zur Vernetzung Ausdifferenzierung des Teilchenmodells zu Synergien Beobachtungen, Beschreibungen, Protokolle, Arbeits- und Kommunikationsformen ← Biologie (IF 1) 	

JAHRGANGSSTUFE 6.1

Unterrichtsvorhaben (ca. 32 Ustd. im 1. HJ)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
6.3 Leben bei verschiedenen Temperaturen Wie beeinflusst die Temperatur Vorgänge in der Natur? ca. 8 Ustd.	IF 1: Temperatur und Wärme Thermische Energie: Wärme, Temperatur Wärmetransport: Wärmemitführung, Wärmeleitung, Wärmestrahlung, Wärmedämmung Wirkungen von Wärme: Aggregatzustände und ihre Veränderung, Wärmeausdehnung	 UF1: Wiedergabe und Erläuterung Erläuterung von Phänomenen Fachbegriffe gegeneinander abgrenzen UF4: Übertragung und Vernetzung physikalische Erklärungen in Alltagssituationen E2: Beobachtung und Wahrnehmung Unterscheidung Beschreibung – Deutung E6: Modell und Realität Modelle zur Erklärung und zur Vorhersage K1: Dokumentation Tabellen und Diagramme nach Vorgabe 	 zur Schwerpunktsetzung Anwendungen, Phänomene der Wärme im Vordergrund, als Energieform nur am Rande, Argumentation mit dem Teilchenmodell Selbstständiges Experimentieren zur Vernetzung Aspekte Energieerhaltung und Entwertung → (IF 7) Ausdifferenzierung des Teilchenmodells → Elektron-Atomrumpf und Kern-Hülle-Modell (IF 9, IF 10) zu Synergien Angepasstheit an Jahreszeiten und extreme Lebensräume ← Biologie (IF 1) Teilchenmodell → Chemie (IF 1)
6.4 Sehen und gesehen werden Sicher mit dem Fahrrad im Straßenverkehr! ca. 8 Ustd.	 IF 4: Licht Ausbreitung von Licht: Lichtquellen und Lichtempfänger Modell des Lichtstrahls Sichtbarkeit und die Erscheinung von Gegenständen: Streuung, Reflexion Transmission; Absorption Schattenbildung 	 UF1: Wiedergabe und Erläuterung Differenzierte Beschreibung von Beobachtungen E6: Modell und Realität Idealisierung durch das Modell Lichtstrahl K1: Dokumentation Erstellung präziser Zeichnungen 	zur Schwerpunktsetzung Reflexion nur als Phänomen zur Vernetzung ← Schall (IF 3) Lichtstrahlmodell → (IF 5)

JAHRGANGSSTUFE 6.2

Unterrichtsvorhaben (ca. 38 Ustd. im 2. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
6.5 Licht nutzbar machen Wie entsteht ein Bild in einer (Loch-)Kamera? Unterschiedliche Strahlungsarten – nützlich, aber auch gefährlich! ca. 6 Ustd.	 IF 4: Licht Ausbreitung von Licht: Abbildungen Sichtbarkeit und die Erscheinung von Gegenständen: Schattenbildung 	 UF3: Ordnung und Systematisierung Bilder der Lochkamera verändern Strahlungsarten vergleichen K1: Dokumentation Erstellung präziser Zeichnungen B1: Fakten- und Situationsanalyse Gefahren durch Strahlung Sichtbarkeit von Gegenständen verbessern B3: Abwägung und Entscheidung Auswahl geeigneter Schutzmaßnahmen 	 zur Schwerpunktsetzung nur einfache Abbildungen zur Vernetzung → Abbildungen mit optischen Geräten (IF 5) Es besteht die Möglichkeit den Lernzirkel – Camera-Obscura der RWTH Aachen bei diesem Unterrichtsvorhaben einzusetzen.
6.6 Elektrische Geräte im Alltag Was geschieht in elektrischen Geräten? ca. 10 Ustd.	IF 2: Elektrischer Strom und Magnetismus Stromkreise und Schaltungen: • Spannungsquellen • Leiter und Nichtleiter • verzweigte Stromkreise Gefahren durch Elektrizität	 E4: Untersuchung und Experiment Experimente planen und durchführen K1: Dokumentation Schaltskizzen erstellen, lesen und umsetzen K4: Argumentation Aussagen begründen 	zur Schwerpunktsetzung Makroebene, grundlegende Phä- nomene, Umgang mit Grundbe- griffen
6.7 Projekt: elektrifiziertes Zimmer ca. 8 Ustd.	IF 2: Elektrischer Strom und Magnetismus Stromkreise und Schaltungen: • Spannungsquellen • Leiter und Nichtleiter • verzweigte Stromkreise	 UF4: Übertragung und Vernetzung physikalische Konzepte auf Realsituationen anwenden 	zu Synergien → Informatik (Differenzierungsbereich): UND-, ODER- Schaltung → Kunst: Die "Zimmer" werden im ersten Halbjahr im Fach Kunst hergestellt und dann in der Physik elektrifiziert.

JAHRGANGSSTUFE 6.2

Unterrichtsvorhaben (ca. 38 Ustd. im 2. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
6.8 Elektromagnetismus Analyse verschiedener Anwendungen des elektrischen Stroms ca. 4 Ustd.	IF 2: Elektrischer Strom und Magnetismus Wirkungen des elektrischen Stroms: • magn. Wirkung des elektr. Stroms • Wärmewirkung des elektr. Stroms	E6: Modell und Realität • Modelle zur Veranschaulichung	zur Vernetzung → elektrisches Feld (IF 9) → Elektromotor und Generator (IF 11)
6.9 Physik und Musik Wie lässt sich Musik physika- lisch beschreiben? ca. 4 Ustd.	 IF 3: Schall Schwingungen und Schallwellen: Tonhöhe und Lautstärke; Schallausbreitung Schallquellen und Schallempfänger: Sender-Empfängermodell 	 UF4: Übertragung und Vernetzung Fachbegriffe und Alltagssprache E2: Beobachtung und Wahrnehmung Phänomene wahrnehmen und Veränderungen beschreiben E5: Auswertung und Schlussfolgerung Interpretationen von Diagrammen E6: Modell und Realität Funktionsmodell zur Veranschaulichung 	 zur Schwerpunktsetzung Nur qualitative Betrachtung der Größen, keine Formeln zur Vernetzung ← Teilchenmodell (IF1)
6.10 Achtung Lärm! Wie schützt man sich vor Lärm? ca. 4 Ustd.	 IF 3: Schall Schwingungen und Schallwellen: Schallausbreitung; Absorption, Reflexion Schallquellen und Schallempfänger: Lärm und Lärmschutz 	 UF4: Übertragung und Vernetzung Fachbegriffe und Alltagssprache B1: Fakten- und Situationsanalyse Fakten nennen und gegenüber Interessen abgrenzen B3: Abwägung und Entscheidung Erhaltung der eigenen Gesundheit 	zur Vernetzung ← Teilchenmodell (IF1)
6.11 Schall in Natur und Technik Schall ist nicht nur zum Hören gut! ca. 2 Ustd.	 IF 3: Schall Schwingungen und Schallwellen: Tonhöhe und Lautstärke Schallquellen und Schallempfänger: Ultraschall in Tierwelt, Medizin und Technik 	 UF4: Übertragung und Vernetzung Kenntnisse übertragen E2: Beobachtung und Wahrnehmung Phänomene aus Tierwelt und Technik mit physikalischen Begriffen beschreiben. 	

	JAHRGANGSSTUFE 8.1 (G9)		
Unterrichtsvorhaben (ca. 38 Ustd. im 1. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
8.1 Spiegelbilder im Straßenverkehr Wie entsteht ein Spiegelbild? ca. 6 Ustd.	 IF 5: Optische Instrumente Spiegelungen: Reflexionsgesetz Bildentstehung am Planspiegel Lichtbrechung: Totalreflexion Brechung an Grenzflächen 	UF1: Wiedergabe und Erläuterung • mathematische Formulierung eines physikalischen Zusammenhangs E6: Modell und Realität • Idealisierung (Lichtstrahlmodell)	zur Schwerpunktsetzung Vornehmlich Sicherheitsaspekte zur Vernetzung ← Ausbreitung von Licht: Lichtquellen und Lichtempfänger, Modell des Lichtstrahls, Abbildungen, Reflexion (IF 4) Bildentstehung am Planspiegel → Spiegelte- leskope (IF 6)
8.2 Die Welt der Farben Farben! Wie kommt es dazu? ca. 6 Ustd.	 IF 5: Optische Instrumente Lichtbrechung: Brechung an Grenzflächen Licht und Farben: Spektralzerlegung Absorption Farbmischung 	 UF3: Ordnung und Systematisierung digitale Farbmodelle E5: Auswertung und Schlussfolgerung Parameter bei Reflexion und Brechung E6: Modell und Realität digitale Farbmodelle 	zur Schwerpunktsetzung: Erkunden additiver Farbmischung (z.B. im Realexperiment oder in einer Simulation) zur Vernetzung: ← Infrarotstrahlung, sichtbares Licht und Ultraviolettstrahlung, Absorption, Lichtenergie (IF 4) Spektren → Analyse von Sternenlicht (IF 6) Lichtenergie → Photovoltaik (IF 11) zu Synergien: Schalenmodell ← Chemie (IF 1), Farbensehen → Biologie (IF 7)
8.3 Das Auge – ein optisches System Wie entsteht auf der Netzhaut ein scharfes Bild? ca. 6 Ustd.	 IF 5: Optische Instrumente Lichtbrechung: Brechung an Grenzflächen Bildentstehung bei Sammellinsen und Auge 	 E4: Untersuchung und Experiment Bildentstehung bei Sammellinsen E5: Auswertung und Schlussfolgerung Parametervariation bei Linsensystemen 	zur Schwerpunktsetzung Bildentstehung, Einsatz digitaler Werkzeuge (z. B. Geometriesoftware) zur Vernetzung Linsen, Lochblende ← Strahlenmodell des Lichts, Abbildungen (IF 4) zu Synergien Auge → Biologie (IF 7)

	JAHRGANGSSTUFE 8.1 (G9)		
Unterrichtsvorhaben (ca. 38 Ustd. im 1. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
8.4 Mit optischen Instrumenten Unsichtbares sichtbar gemacht	IF 5: Optische InstrumenteLichtbrechung:Bildentstehung bei optischen In-	UF2: Auswahl und AnwendungBrechungBildentstehungUF4: Übertragung und Vernetzung	zur Schwerpunktsetzung Erstellung von Präsentationen zu physikalischen Sachverhalten
Wie können wir Zellen und Pla- neten sichtbar machen?	strumenten • Lichtleiter	 Einfache optische Systeme Endoskop und Glasfaserkabel K3: Präsentation 	 zur Vernetzung Teleskope → Beobachtung von Himmels-körpern (IF 6) zu Synergien
ca. 4 Ustd.		arbeitsteilige Präsentationen	Mikroskopie von Zellen ←→ Biologie (IF 1, IF 2, IF 6)
8.5 Licht und Schatten im Sonnensystem Wie entstehen Mondphasen, Finsternisse und Jahreszeiten?	 IF 6: Sterne und Weltall Sonnensystem: Mondphasen Mond- und Sonnenfinsternisse Jahreszeiten 	 E1: Problem und Fragestellung naturwissenschaftlich beantwortbare Fragestellungen E2: Beobachtung und Wahrnehmung Differenzierte Beschreibung von Beobachtungen 	 zur Schwerpunktsetzung Naturwissenschaftliche Fragestellungen, ggf. auch aus historischer Sicht zur Vernetzung ← Schatten (IF 4) zu Synergien
ca. 6 Ustd.		E6: Modell und RealitätPhänomene mithilfe von gegenständlichen Modellen erklären	Schrägstellung der Erdachse, Beleuchtungszonen, Jahreszeiten ↔ Erdkunde (IF 5)
8.6 Objekte am Himmel Was kennzeichnet die verschiedenen Himmelsobjekte? ca. 10 Ustd.	IF 6: Sterne und Weltall Sonnensystem: • Planeten Universum: • Himmelsobjekte Sternentwicklung	 UF3: Ordnung und Systematisierung Klassifizierung von Himmelsobjekten E7: Naturwissenschaftliches Denken und Arbeiten gesellschaftliche Auswirkungen B2: Bewertungskriterien und Handlungsoptionen Wissenschaftliche und andere Weltvorstellungen vergleichen Gesellschaftliche Relevanz (Raumfahrtprojekte) 	zur Vernetzung ← Fernrohr (IF 5), Spektralzerlegung des Lichts (IF 5)

	JAHRGANGSSTUFE 8.2 (G9)		
Unterrichtsvorhaben (ca. 34 Ustd. im 2. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
8.7 100 m in 10 Sekunden Wie schnell bin ich? ca. 6 Ustd.	IF7: Bewegung, Kraft und Energie Bewegungen: Geschwindigkeit Beschleunigung	 UF1: Wiedergabe und Erläuterung Bewegungen analysieren E4: Untersuchung und Experiment Aufnehmen von Messwerten Systematische Untersuchung der Beziehung zwischen verschiedenen Variablen E5: Auswertung und Schlussfolgerung Erstellen von Diagrammen Kurvenverläufe interpretieren 	zur Schwerpunktsetzung: Einführung von Vektorpfeilen für Größen mit Betrag und Richtung, Darstellung von realen Messdaten in Diagrammen zur Vernetzung: Vektorielle Größen → Kraft (IF 7) zu Synergien Mathematisierung physikalischer Gesetzmäßigkeiten in Form funktionaler Zusammenhänge ← Mathematik (IF Funktionen)
8.8 Einfache Maschinen und Werkzeuge: Kleine Kräfte, lange Wege Wie kann ich mit kleinen Kräften eine große Wirkung erzielen? ca. 12 Ustd.	 IF 7: Bewegung, Kraft und Energie Kraft: Bewegungsänderung Verformung Wechselwirkungsprinzip Gewichtskraft und Masse Kräfteaddition Reibung Goldene Regel der Mechanik: einfache Maschinen 	 UF3: Ordnung und Systematisierung Kraft und Gegenkraft Goldene Regel E4: Untersuchung und Experiment Aufnehmen von Messwerten Systematische Untersuchung der Beziehung zwischen verschiedenen Variablen E5: Auswertung und Schlussfolgerung Ableiten von Gesetzmäßigkeiten (Jedesto-Beziehungen) B1: Fakten- und Situationsanalyse Einsatzmöglichkeiten von Maschinen Barrierefreiheit 	 zur Schwerpunktsetzung Experimentelles Arbeiten, Anforderungen an Messgeräte zur Vernetzung Vektorielle Größen, Kraft ← Geschwindigkeit (IF 7) zu Synergien Bewegungsapparat, Skelett, Muskeln ← Biologie (IF 2), Lineare und proportionale Funktionen ← Mathematik (IF Funktionen)

	JAHRGANGSSTUFE 8.2 (G9)		
Unterrichtsvorhaben (ca. 34 Ustd. im 2. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
8.9 Energie treibt alles an Was ist Energie? Wie kann ich schwere Dinge heben? ca. 8 Ustd.	IF 7: Bewegung, Kraft und Energie Energieformen: Lageenergie Bewegungsenergie Spannenergie Energieumwandlungen: Energieerhaltung Leistung	 UF1: Wiedergabe und Erläuterung Energieumwandlungsketten UF3: Ordnung und Systematisierung Energieerhaltung 	zur Schwerpunktsetzung Energieverluste durch Reibung thematisieren, Energieerhaltung erst hier, Energiebilanzierung zur Vernetzung Energieumwandlungen, Energieerhaltung ← Goldene Regel (IF7) Energieumwandlungen, Energieerhaltung ← Energieentwertung (IF 1, IF 2) zu Synergien Energieumwandlungen ← Biologie (IF 2) Energieumwandlungen, Energieerhaltung → Biologie (IF 4) Energieumwandlungen, Energieerhaltung, Energieentwertung → Biologie (IF 7) Energieumwandlungen, Energieerhaltung → Chemie (alle bis auf IF 1 und IF 9)
8.10 Mechanik-Projekt* Verknüpfung und Anwendung der mechanischen Konzepte (z.B. Energie und Kraft)	 IF 7: Bewegung, Kraft und Energie Wahlweise (je nach Projekt): Bewegung Kraft Energie 	 UF4: Übertragung und Vernetzung physikalische Konzepte auf Realsituationen anwenden E2: Beobachtung und Wahrnehmung Differenzierte Beschreibung von Beobachtungen E6: Modell und Realität 	Je nach Projekt individuell
ca. 8 Ustd.	Leistung	Phänomene mithilfe von gegenständ- lichen Modellen erklären	

^{*}Beispiele für mögliche mechanische Projekte sind: das Mausefallenauto, Katapulte, die römische Schnellwaage oder der Bau und die Analyse eines Seilzugs. Es dürfen auch abweichende Projekte und auch mehr als ein Projekt behandelt werden.

Jahrgangsstufe 9 (G8)

Der folgende Passus gilt lediglich für das Schuljahr 2021-22 und umfasst den schulinternen Lehrplan für den auslaufenden G8-Jahrgang der Stufe 9. Physik wird in diesem Schuljahr 2-stündig unterrichtet.

	JAHRGANGSTUFE 9 (G8)			
Std.	Fachliche Inhalte	Kompetenzen und didaktisch-methodische Hinweise		
12	Elektrizität – messen, verstehen, anwenden: Elektroinstallationen und Sicherheit rund um das Haus	Mögliche Kontexte: - Elektroinstallationen und Sicherheit im Haus - Elektrik rund um das Auto		
	Basiskonzepte	 in relevanten Anwendungszusammenhängen komplexere Vorgänge energetisch beschreiben und dabei Speicherungs-, Transport-, Umwandlungsprozesse erkennen und darstellen verschiedene Stoffe bzgl. ihrer thermischen, mechanischen oder elektrischen Stoffeigenschaften vergleichen die elektrischen Eigenschaften von Stoffen (Ladung und Leitfähigkeit) mithilfe eines einfachen Kern-Hülle-Modells erklären Eigenschaften von Materie mit einem angemessenen Atommodell beschreiben die Spannung als Indikator für durch Ladungstrennung gespeicherte Energie beschreiben den quantitativen Zusammenhang von Spannung, Ladung und gespeicherter bzw. umgesetzter Energie kennen und zur Beschreibung energetischer Vorgänge in Stromkreisen nutzen 		
4	Sicherheit, Quellen elektrischer Energie, elektrische Ladung, elektrisches Feld und Ladungsspeicherung	An die Kompetenz aus der 5/6 "geeignete Maßnahmen für den sicheren Umgang mit elektrischem Strom beschreiben" kann angeknüpft und die Unterscheidung zwischen Alltags- und Fachsprache thematisiert werden. Der Nachweis der Wirkungen von elektrischen Ladungen sollte vor der Behandlung eines einfachen Kern-Hülle-Modells stehen. Bei der Einführung des elektrischen Felds sind Vergleiche zum magnetischen Feld anzustellen. Regeln zum Verhalten bei Gewitter sollten fachlich begründet werden.		
2	Bewegte Ladung, elektrische Stromstärke, Hausinstallation und Sicherheit	Anhand differenzierter Modelle zum elektrischen Stromstärke wird die Methode "Arbeiten mit Modellen" eingeführt. An diese Methode wird immer wieder angeknüpft. Kenntnisse aus der Klasse 5/6 zu den Themen "Einfacher Stromkreis, Reihen- und Parallelschaltung, Leiter, Nichtleiter, Kurzschluss" werden wiederholt und vertieft. Folgende Kompetenzen aus dem Lehrplan 5/6 aus dem Basiskonzept System bzw. Wechselwirkung werden aufgegriffen: einfache elektrische Schaltungen planen und aufbauen, den Energiefluss in Stromkreisen beschreiben und an Beispielen aus ihrem Alltag verschiedene Wirkungen des elektrischen Stroms aufzeigen und unterscheiden.		
2	Elektrische Spannung, Leerlaufspannung und Klemmspannung	Die elektrische Spannung wird als Stärke des Antriebs des elektrischen Stroms eingeführt. Ebenso ist es möglich, zur Definition der Spannung über die Wärmewirkung eines Tauchsieders oder die elektrische Leistung zu gelangen. Die Reihen- und Parallelschaltung von Batterien wird erläutert, die Begriffe Klemm- und Leerlaufspannung werden eingeführt.		
4	Zusammenhang zwischen Spannung und Stromstärke, elektrischer Widerstand und Widerstandsgesetz	Der Einstieg in den Zusammenhang wird experimentell erarbeitet und "Selbst erforscht". Zur Verarbeitung der Daten wird die Methode "Lösen physikalisch-mathematischer Aufgaben" vorgestellt und kann an den Berechnungen zum Widerstand vertiefend geübt werden.		

23	Effiziente Energienutzung (2) Strom für zu Hause	Kontexte: - Strom für zu Hause
	Basiskonzepte	den quantitativen Zusammenhang von umgesetzter Energiemenge (bei Energieumsetzung durch Kraftwirkung: Arbeit), Leistung und Zeitdauer des Prozesses kennen und in Beispielen aus Natur und Technik nutzen Temperaturdifferenzen, Höhenunterschiede, Druckdifferenzen und Spannungen als Voraussetzungen für und als Folge von Energieübertragung an Beispielen aufzeigen E7 Lage-, kinetische und durch den elektrischen Strom transportierte sowie thermisch übertragene Energie (Wärmemenge) unterscheiden, formal beschreiben und für Berechnungen nutzen E10 verschiedene Möglichkeiten der Energiegewinnung, -aufbereitung und -nutzung unter physikalisch-technischen, wirtschaftlichen und ökologischen Aspekten vergleichen und bewerten sowie deren gesellschaftliche Relevanz und Akzeptanz diskutieren S1 den Aufbau von Systemen beschreiben und die Funktionsweise ihrer Komponenten erklären (z. B. Kraftwerke, medizinische Geräte, Energieversorgung) S4 den quantitativen Zusammenhang von Spannung, Ladung und gespeicherter bzw. umgesetzter Energie kennen und zur Beschreibung energetischer Vorgänge in Stromkreisen nutzen S6 umgesetzte Energie und Leistung in elektrischen Stromkreisen aus Spannung und Stromstärke bestimmen
4	Magnetfelder stromdurchflossener Leiter, elektromagnetische Induktion, Induktionsgesetz, Lenz'sche Regel	Der Kontext greift auf Vorkenntnisse zurück, die die Schülerinnen und Schüler im Kontext "Elektrizität – messen, verstehen, anwenden" erworben haben. Dabei sind die Kompetenzen "E1 in relevanten Anwendungszusammenhängen komplexere Vorgänge energetisch beschreiben und dabei Speicherungs-, Transport-, Umwandlungsprozesse erkennen und darstellen" und "S1 den Aufbau von Systemen beschreiben und die Funktionsweise ihrer Komponenten erklären (z. B. Kraftwerke, medizinische Geräte, Energieversorgung)" zentral. Außerdem können Vorkenntnisse zum Magnetismus aus dem Grundschullehrplan und aus der Klasse 5/6 (W4 beim Magnetismus erläutern, dass Körper ohne direkten Kontakt eine anziehende oder abstoßende Wirkung aufeinander ausüben können) aufgegriffen werden. Zahlreiche Beispiele aus Haushalt und Beruf bieten sich als Einstieg an. Die Kompetenz S1 wird besonders durch die Beschreibung des Aufbaus eines technischen Geräts und Erklären seiner Wirkungsweise" unterstützt. Am Beispiel eines Elektromotors wird beschrieben, wie dieser aufgebaut ist. Seine Wirkungsweise wird erklärt.
6	Wechselstromgenerator, Transformator, Elektromotor	Die Methode "Beschreiben des Aufbaus eines technischen Geräts und Erklären seiner Wirkungsweise" kann an weiteren Beispielen geübt werden z.B. "Kochen mit Induktion". Ein Projekt zum Generator oder Elektromotor schließt diese Unterrichtseinheit motivierend ab und liefert Einblicke in komplexe Anwendungen .
4		Die Zusammenhänge zwischen Energie, Zeit, Spannung, und Stromstärke können von den Schülerinnen und Schülern in Gruppen erarbeitet werden. Die einzelnen Abhängigkeiten werden dann zu einer Gleichung zusammengefasst. Die Energieflüsse sind sowohl für die Parallelschaltung als auch für die Reihenschaltung zu diskutieren. Im Projekt "Energie sparen – aber wie?" werden den Schülerinnen und Schülern die oft spröde erscheinenden formalen Zusammen-hänge durch die Anwendung der Kenntnisse in praktischen Situationen deutlich.
	Elektronische Schaltungen	S1 den Aufbau von Systemen beschreiben und die Funktionsweise ihrer Komponenten erklären. S2 Energieflüsse/Stromflüsse in den oben genannten Systemen

	Basiskonzepte	 beschreiben S4 die Beziehung von Spannung, Stromstärke und Widerstand in elektrischen Schaltungen beschreiben und anwenden S7 technische Geräte hinsichtlich ihres Nutzens für Mensch und Gesellschaft und ihrer Auswirkungen auf die Umwelt beurteiltechnische Geräte und Anlagen unter Berücksichtigung von Nutzen, Gefahren und Belastung der Umwelt vergleichen und bewerten und Alternativen erläutern
4		Im gewählten Kontext kann auf Vorkenntnisse aus dem Unterricht in 5/6 und auf Vorerfahrungen aus dem Alltag zurückgegriffen werden. Daher ist eine Diagnose zum Kenntnisstand Voraussetzung für die weitere Unterrichtsplanung. Diese kann in Form einer Mindmap deutlich werden, die die Schülerinnen und Schüler individuell anfertigen. Die Methode "Erstellen einer Mindmap" wird am Beispiel der elektronischen Schaltungen vorgestellt. Die Anleitungen zum Experimentieren fordern die Anwendung der experimentellen Methode. Bei der Verallgemeinerung der Gesetze in unverzweigten und verzweigten Stromkreisen kann es hilfreich sein, Voraussagen mithilfe differenzierter Modelle zum elektrischen Stromkreis zu machen. Als weitere Methode wird das "Begründen" eingeführt.
3	Widerstand in unverzweigten und verzweigten Stromkreisen, Spannungsteilerschaltung und Kirchhoff'sche Gesetze	
2	Einordnung in die Basiskonzepte, Reflexion der erworbenen Kompetenzen	Basiskonzepte können wiederholt und Inhalte bzw. Kompetenzen den Basiskonzepten zugeordnet werden. Dazu sollten Aufgaben, differenziert nach Erwerb von konzept- und prozessbezogenen Kompetenzen, angeboten werden. Erworbene Kompetenzen sollten eingeschätzt werden.

23	Radioaktivität und Kernenergie	Mögl. Kontexte: Strahlendiagnostik und Strahlentherapie, Radioaktivität und Kernenergie-Nutzen und Gefahren	
	Strahlendiagnostik und Strahlentherapie Basiskonzepte	verschiedene Möglichkeiten der Energiegewinnung, -aufbereitung und -nutzung unter physikalisch-technischen, wirtschaftlichen und ökologischen Aspekten vergleichen und bewerten sowie deren gesellschaftliche Relevanz und Akzeptanz diskutieren Beigenschaften von Materie mit einem angemessenen Atommodell beschreiben die Entstehung von ionisierender Teilchenstrahlung beschreiben Eigenschaften und Wirkungen verschiedener Arten radioaktiver Strahlung und Röntgenstrahlung nennen Zerfallsreihen mithilfe der Nuklidkarte identifizieren Nutzen und Risiken radioaktiver Strahlung und Röntgenstrahlung bewerten experimentelle Nachweismöglichkeiten für radioaktive Strahlung beschreiben die Wechselwirkung zwischen Strahlung, insbesondere ionisierender Strahlung, und Materie beschreiben und damit mögliche medizinische Anwendungen und Schutzmaßnahmen erklären	
4	Aufbau und Größe von Atomen, Nuklide und Isotope	Der Einstieg über den Kontext "Strahlendiagnostik und Strahlentherapie" spricht besonders die Mädchen der Lerngruppe an, da medizinische Anwendungen und Gesundheitsfürsorge auf ihr Interesse stoßen. Vorkenntnisse können nur aus dem Alltagswissen stammen. Dies kann jedoch sehr unterschiedlich sein, da Medien ein großes Angebot von Informationen zum Thema liefern. Größenabschätzungen von Atomen bereiten noch Erwachsenen Mühe, sodass hier Fehlvorstelllungen vorgebeugt bzw. Vorstellungen zum Atomaufbau geprägt werden können. Verknüpfungen zum Fach Chemie sollten genutzt und hergestellt werden.	
5	Röntgenstrahlung, Diagnostik und Therapie, Strahlenschutz, natürliche und künstliche Radioaktivität		
6	Kernzerfall, ionisierende Strahlung, natürliche und künstliche Strahlenbelastung, Anwendungen		
5	Röntgenstrahlung, Diagnostik und Therapie, Strahlenschutz, natürliche und künstliche Radioaktivität		
6	Kernzerfall, ionisierende Strahlung, natürliche und künstliche Strahlenbelastung, Anwendungen		

	Radioaktivität und Kernenergie – Nutzen und Gefahren Basiskonzepte	 in relevanten Anwendungszusammenhängen komplexere Vorgänge energetisch beschreiben und dabei Speicherungs-, Transport-, Umwandlungsprozesse erkennen und darstellen den quantitativen Zusammenhang von umgesetzter Energiemenge (bei Energieumsetzung durch Kraftwirkung: Arbeit), Leistung und Zeitdauer des Prozesses kennen und in Beispielen aus Natur und Technik nutzen Lage-, kinetische und durch den elektrischen Strom transportierte sowie thermisch übertragene Energie (Wärmemenge) unterscheiden, formal beschreiben und für Berechnungen nutzen beschreiben, dass die Energie, die wir nutzen, aus erschöpfbaren oder regenerativen Quellen gewonnen werden kann Prinzipien von Kernspaltung und Kernfusion auf atomarer Ebene beschreiben den Aufbau von Systemen beschreiben und die Funktionsweise ihrer Komponenten erklären (z. B. Kraftwerke, medizinische Geräte, Energieversorgung) Energieflüsse in den oben genannten offenen Systemen beschreiben technische Geräte und Anlagen unter Berücksichtigung von Nutzen, Gefahren und Belastung der Umwelt vergleichen und bewerten und Alternativen erläutern die Wechselwirkung zwischen Strahlung, insbesondere ionisierender Strahlung, und Materie sowie die daraus resultierenden Veränderungen der Materie beschreiben und damit mögliche medizinische Anwendungen und Schutzmaßnahmen erklären 		
4	Kernspaltung und Kernkraftwerke	Kernkraft und Kernspaltung sind in Presseartikeln immer wieder relevant, sodass man auf die Artikel in Büchern oder aktuelle Zeitungsartikel zurückgreifen kann. Als Methode wird das "Bewerten" eingeführt. Besonders das Finden geeigneter Bewertungskriterien und das Ableiten eines Werturteils bereiten den Schülerinnen und Schülern Probleme. Sie müssen an Beispielen geübt werden.		
2	Kernfusion, Kräfte und Energien im Atom- kern	Bei der Kernfusion wird das Wissen zum Atomaufbau wieder aufgegriffen und um die "Kräfte und Energien im Atomkern" ergänzt. Das Thema stößt bei Schülerinnen und Schüler auf große Faszination, und Albert Einstein ist sehr beliebt. Das Auswerten von Diagrammen kann an dem komplexen Diagramm zu Kernfusion und Kernspaltung geübt werden.		
2	Einordnung in die Basiskonzepte, Reflexion der erworbenen Kompetenzen	Die erworbenen Kompetenzen sollten in die Basiskonzepte eingeordnet und mithilfe von Aufgaben reflektiert werden. Die erworbenen Kompetenzen sollten eingeschätzt werden.		
2	Ziel erreicht			
	Basiskonzepte Kompetenzentwicklung	Wiederholen der Basiskonzepte mit Bezug zu den einzelnen Kontexten, Herstellen von Strukturierungen, Systematisierungen und Zusammenhängen		
	Teste dich selbst	Aufgaben mit Auswahlantworten aus allen Themenbereichen zum Selbsttesten		
	Kniffliges	Komplexe Aufgaben aus allen Themenbereichen, die einen Transfer verlangen und auch Lesefähigkeiten herausfordern		

Jahrgangsstufen 9 und 10 (G9)

Der folgende Passus zur Jahrgangsstufe 9 gilt ab dem Schuljahr 2022-23, der Passus zur Jahrgangsstufe 10 gilt ab dem Schuljahr 2023-24 und umfasst den schulinternen Lehrplan für die folgenden G9-Jahrgänge.

In der Jahrgangsstufe 9 wird Physik **1-stündig** unterrichtet. In der Jahrgangsstufe 10 wird Physik **2-stündig** unterrichtet.

JAHRGANGSSTUFE 9.1 (G9)			
Unterrichtsvorhaben (ca. 17 Ustd. im 1. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
9.1 Druck und Auftrieb Was ist Druck? ca. 12 Ustd.	IF 8: Druck und Auftrieb Druck in Flüssigkeiten und Gasen: Druck als Kraft pro Fläche Schweredruck Luftdruck (Atmosphäre) Dichte Auftrieb Archimedisches Prinzip Druckmessung: Druck und Kraftwirkungen	 UF1: Wiedergabe und Erläuterung Druck und Kraftwirkungen UF2 Auswahl und Anwendung Auftriebskraft E5: Auswertung und Schlussfolgerung Schweredruck und Luftdruck bestimmen E6: Modell und Realität Druck und Dichte im Teilchenmodell Auftrieb (qualitativ und quantitativ) 	zur Schwerpunktsetzung Anwendung experimentell gewonnener Erkenntnisse zur Vernetzung Druck ← Teilchenmodell (IF1) Auftrieb ← Kräfte (IF 7) zu Synergien Dichte ← Chemie (IF 1)
9.2 Blitze und Gewitter Warum schlägt ein Blitz ein? ca. 5 Ustd.	 IF 9: Elektrizität Elektrostatik: elektrische Ladungen elektrische Felder Spannung elektrische Stromkreise: Elektronen-Atomrumpf-Modell Ladungstransport und elektrischer Strom 	 Wiedergabe und Erläuterung Korrekter Gebrauch der Begriffe Ladung, Spannung und Stromstärke Unterscheidung zwischen Einheit und Größen E4: Untersuchung und Experiment Umgang mit Ampere- und Voltmeter E5: Auswertung und Schlussfolgerung Schlussfolgerungen aus Beobachtungen E6: Modell und Realität Elektronen-Atomrumpf-Modell Feldlinienmodell Schaltpläne 	 zur Schwerpunktsetzung Anwendung des Elektron-Atomrumpf- Modells zur Vernetzung ← Elektrische Stromkreise (IF2) zu Synergien Kern-Hülle-Modell ← Chemie

JAHRGANGSSTUFE 9.2 (G9)			
Unterrichtsvorhaben (ca. 17 Ustd. im 2. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
9.3 Sicherer Umgang mit Elektrizität Wann ist Strom gefährlich? ca. 14 Ustd.	 IF 9: Elektrizität elektrische Stromkreise: elektrischer Widerstand Reihen- und Parallelschaltung Sicherungsvorrichtungen elektrische Energie und Leistung 	 UF4: Übertragung und Vernetzung Anwendung auf Alltagssituationen E4 Untersuchung und Experiment Systematische Untersuchung der Beziehung zwischen verschiedenen Variablen E5: Auswertung und Schlussfolgerung Mathematisierung (proportionale Zusammenhänge, graphisch und rechnerisch) E6: Modell und Realität Analogiemodelle und ihre Grenzen B3: Abwägung und Entscheidung Sicherheit im Umgang mit Elektrizität 	 zur Schwerpunktsetzung Analogiemodelle (z.B. Wassermodell); Mathematisierung physikalischer Gesetze; keine komplexen Ersatzschaltungen zur Vernetzung Stromwirkungen (IF2) zu Synergien Nachweis proportionaler Zuordnungen; Umformungen zur Lösung von Gleichungen ← Mathematik (Funktion erste Stufe)
9.4 Elektronikprojekt	IF 9: Elektrizität	UF4: Übertragung und Vernetzungphysikalische Konzepte auf Realsituationen anwenden	
Wie kann ich eine LED zuver- lässig zum Leuchten bringen?	elektrische Stromkreise elektrischer Energie und Leistung	E2: Beobachtung und WahrnehmungDifferenzierte Beschreibung von Beobachtungen	
ca. 3 Ustd.		E6: Modell und RealitätPhänomene mit geeigneten Modellen erklären	

JAHRGANGSSTUFE 10.1 (G9)			
Unterrichtsvorhaben (ca. 34 Ustd. im 1. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
10.1 Gefahren und Nutzen ionisierender Strahlung Ist ionisierende Strahlung gefährlich oder nützlich? ca. 15 Ustd	IF 10: Ionisierende Strahlung und Kernenergie Atomaufbau und ionisierende Strahlung: • Alpha-, Beta-, Gamma Strahlung, • radioaktiver Zerfall, • Halbwertszeit, • Röntgenstrahlung Wechselwirkung von Strahlung mit Materie: • Nachweismethoden, • Absorption, • biologische Wirkungen, • medizinische Anwendung, • Schutzmaßnahmen	 UF4: Übertragung und Vernetzung Biologische Wirkungen und medizinische Anwendungen E1: Problem und Fragestellung Auswirkungen auf Politik und Gesellschaft E7: Naturwissenschaftliches Denken und Arbeiten Nachweisen und Modellieren K2: Informationsverarbeitung Filterung von wichtigen und nebensächlichen Aspekten 	 zur Schwerpunktsetzung Quellenkritische Recherche, Präsentation zur Vernetzung Atommodelle ← Chemie (IF 5) Radioaktiver Zerfall ← Mathematik Exponentialfunktion (Funktionen zweite Stufe) → Biologie (SII, Mutationen, 14C)
10.2 Energie aus Atomkernen Ist die Kernenergie beherrsch- bar? ca. 10 Ustd.	IF 10: Ionisierende Strahlung und Kernenergie Kernenergie: Kernspaltung, Kernfusion, Kernkraftwerke, Endlagerung	 K2: Informationsverarbeitung Seriosität von Quellen K4: Argumentation eigenen Standpunkt schlüssig vertreten B1: Fakten- und Situationsanalyse Identifizierung relevanter Informationen B3: Abwägung und Entscheidung Meinungsbildung 	 zur Schwerpunktsetzung Meinungsbildung, Quellenbeurteilung, Entwicklung der Urteilsfähigkeit zur Vernetzung ← Zerfallsgleichung aus 10.1. → Vergleich der unterschiedlichen Energieanlagen (IF 11)
10.3 Versorgung mit elektrischer Energie – Teil 1 Wie erfolgt die Übertragung der elektrischen Energie vom Kraftwerk bis zum Haushalt? ca. 9 Ustd.	IF 11: Energieversorgung Induktion und Elektromagnetismus: • Elektromotor • Generator • Wechselspannung	 E4: Untersuchung und Experiment Planung von Experimenten mit mehr als zwei Variablen Variablenkontrolle B2: Bewertungskriterien und Hand- lungsoptionen Kaufentscheidungen treffen 	 zur Schwerpunktsetzung Verantwortlicher Umgang mit Energie zur Vernetzung ← Energiewandlung (IF 10) ← mechanische Leistung und Energie (IF 7), elektrische Leistung und Energie (IF 9)

JAHRGANGSSTUFE 10.2 (G9)			
Unterrichtsvorhaben (ca. 34 Ustd. im 1. Halbjahr)	Inhaltsfelder Inhaltliche Schwerpunkte	Schwerpunkte der Kompetenzentwicklung	Weitere Vereinbarungen
10.4 Projekt: Elektromotor oder Generator Wie kann ich eine LED zuverlässig zum Leuchten bringen? ca. 8 Ustd.	 IF 11: Energieversorgung Induktion und Elektromagnetismus: Elektromotor Generator Wechselspannung 	 UF4: Übertragung und Vernetzung physikalische Konzepte auf Realsituationen anwenden E2: Beobachtung und Wahrnehmung Differenzierte Beschreibung von Beobachtungen E6: Modell und Realität Phänomene mithilfe von gegenständlichen Modellen erklären 	Je nach Projekt individuell
10.3 Versorgung mit elektrischer Energie – Teil 2 Wie erfolgt die Übertragung der elektrischen Energie vom Kraftwerk bis zum Haushalt? ca. 6 Ustd.	IF 11: Energieversorgung Transformator Bereitstellung und Nutzung von Energie: • Energieübertragung • Energieentwertung • Wirkungsgrad	 E4: Untersuchung und Experiment Planung von Experimenten mit mehr als zwei Variablen Variablenkontrolle B2: Bewertungskriterien und Handlungsoptionen Kaufentscheidungen treffen 	 zur Schwerpunktsetzung Verantwortlicher Umgang mit Energie zur Vernetzung ← Energiewandlung (IF 10) ← mechanische Leistung und Energie (IF 7), elektrische Leistung und Energie (IF 9)
10.5 Energieversorgung der Zukunft Wie können regenerative Energien zur Sicherung der Energieversorgung beitragen? ca. 20 Ustd.	IF 11: Energieversorgung Bereitstellung und Nutzung von Energie: • Kraftwerke • Regenerative Energieanlagen • Energieübertragung • Energieentwertung • Wirkungsgrad • Nachhaltigkeit	 UF4: Übertragung und Vernetzung Beiträge verschiedener Fachdisziplinen zur Lösung von Problemen K2: Informationsverarbeitung Quellenanalyse B3: Abwägung und Entscheidung Filterung von Daten nach Relevanz B4: Stellungnahme und Reflexion Stellung beziehen 	zur Schwerpunktsetzung Verantwortlicher Umgang mit Energie, Nachhaltigkeitsgedanke zur Vernetzung ←Kernkraftwerk, Energiewandlung (IF 10) zu Synergien Energie aus chemischen Reaktionen → Chemie (IF 3, 10); Energiediskussion → Erdkunde (IF 5), Wirtschaft-Politik (IF 3, 10)

2.2 Grundsätze der fachmethodischen und fachdidaktischen Arbeit

Die Lehrerkonferenz hat unter Berücksichtigung des Schulprogramms als überfachliche Grundsätze für die Arbeit im Unterricht bekräftigt, dass die im Referenzrahmen Schulqualität NRW formulierten Kriterien und Zielsetzungen als Maßstab für die kurz- und mittelfristige Entwicklung der Schule gelten sollen. Gemäß dem Schulprogramm sollen insbesondere die Lernenden als Individuen mit jeweils besonderen Fähigkeiten, Stärken und Interessen im Mittelpunkt stehen. Die Fachgruppe vereinbart, der individuellen Kompetenzentwicklung (Referenzrahmen Kriterium 2.2.1) und den herausfordernden und kognitiv aktivierenden Lehr- und Lernprozessen (Kriterium 2.2.2) besondere Aufmerksamkeit zu widmen.

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Physik bezüglich ihres schulinternen Lehrplans die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen:

Lehr- und Lernprozesse

- Schwerpunktsetzungen nach folgenden Kriterien:
 - Herausstellung zentraler Ideen und Konzepte, auch unter Nutzung von Synergien zwischen den naturwissenschaftlichen Fächern
 - Zurückstellen von Verzichtbarem bzw. eventuell späteres Aufgreifen, Orientierung am Prinzip des exemplarischen Lernens
 - Anschlussfähigkeit (fachintern und fachübergreifend)
 - o Herstellen von Zusammenhängen statt Anhäufung von Einzelfakten
- Lehren und Lernen in sinnstiftenden Kontexten nach folgenden Kriterien
 - Eignung des Kontextes zum Erwerb spezifischer Kompetenzen ("Was kann man an diesem Thema besonders gut lernen"?)
 - klare Schwerpunktsetzungen bezüglich des Erwerbs spezifischer Kompetenzen, insbesondere auch bezüglich physikalischer Denk- und Arbeitsweisen
 - o eingegrenzte und altersgemäße Komplexität
 - o authentische, motivierende und tragfähige Problemstellungen
 - Nachvollziehbarkeit/Schülerverständnis der Fragestellung
 - o Kontexte und Lernwege sollten nicht unbedingt an fachsystematischen Strukturen, sondern eher an Erkenntnis- und Verständnisprozessen der Lernenden ansetzen.
- Variation der Lernaufgaben und Lernformen mit dem Ziel einer kognitiven Aktivierung aller Lernenden nach folgenden Kriterien
 - Aufgaben auch zur F\u00f6rderung von vernetztem Denken mit Hilfe von \u00fcbergreifenden Prinzipien, grundlegenden Ideen und Basiskonzepten
 - Einsatz von digitalen Medien und Werkzeugen zur Verständnisförderung und zur Unterstützung und Beschleunigung des Lernprozesses.
 - Einbindung von Phasen der Metakognition, in denen zentrale Aspekte von zu erwerbenden Kompetenzen reflektiert werden, explizite Thematisierung der erforderlichen Denk- und Arbeitsweisen und ihrer zugrundeliegenden Ziele und Prinzipien, Vertrautmachen mit dabei zu verwendenden Begrifflichkeiten
 - Vertiefung der Fähigkeit zur Nutzung erworbener Kompetenzen beim Transfer auf neue Aufgaben und Problemstellungen durch hinreichende Integration von Reflexions-, Übungs- und Problemlösephasen in anderen Kontexten
 - ziel- und themengerechter Wechsel zwischen Phasen der Einzelarbeit, Partnerarbeit und Gruppenarbeit unter Berücksichtigung von Vielfalt durch Elemente der Binnendifferenzierung
 - o Beachtung von Aspekten der Sprachsensibilität bei der Erstellung von Materialien.
 - bei kooperativen Lernformen: insbesondere Fokussierung auf das Nachdenken und den Austausch von naturwissenschaftlichen Ideen und Argumenten

Experimente und eigenständige Untersuchungen

- Verdeutlichung der verschiedenen Funktionen von Experimenten in den Naturwissenschaften und des Zusammenspiels zwischen Experiment und konzeptionellem Verständnis
- überlegter und zielgerichteter Einsatz von Experimenten: Einbindung in Erkenntnisprozesse und in die Klärung von Fragestellungen
- schrittweiser und systematischer Aufbau von der reflektierten angeleiteten Arbeit hin zur Selbstständigkeit bei der Planung, Durchführung und Auswertung von Untersuchungen
- Nutzung sowohl von manuell-analoger, aber auch digitaler Messwerterfassung und Messwertauswertung
- Entwicklung der Fähigkeiten zur Dokumentation der Experimente und Untersuchungen (Versuchsprotokoll) in Absprache mit den Fachkonferenzen der anderen naturwissenschaftlichen Fächer

Individuelles Lernen und Umgang mit Heterogenität

Gemäß ihren Zielsetzungen setzt die Fachgruppe ihren Fokus auf eine Förderung der individuellen Kompetenzentwicklung, Die Gestaltung von Lernprozessen kann sich deshalb nicht auf eine angenommene mittlere Leistungsfähigkeit einer Lerngruppe beschränken, sondern muss auch Lerngelegenheiten sowohl für stärkere als auch schwächere Schülerinnen und Schüler bieten. Um den Arbeitsaufwand dafür in Grenzen zu halten, vereinbart die Fachgruppe, bei der schrittweisen Nutzung bzw. Erstellung von Lernarrangements, bei der alle Lernenden am gleichen Unterrichtsthema arbeiten, aber dennoch vielfältige Möglichkeiten für binnendifferenzierende Maßnahmen bestehen, eng zusammenzuarbeiten. Gesammelt bzw. erstellt, ausgetauscht sowie erprobt werden sollen zunächst

- unterrichtsbegleitende Testaufgaben zur Diagnose individueller Kompetenzentwicklung in allen Kompetenzbereichen
- komplexere Lernaufgaben mit gestuften Lernhilfen für unterschiedliche Leistungsanforderungen
- unterstützende zusätzliche Maßnahmen für erkannte oder bekannte Lernschwierigkeiten
- herausfordernde zusätzliche Angebote für besonders leistungsstarke Schülerinnen und Schüler (auch durch Helfersysteme oder Unterrichtsformen wie "Lernen durch Lehren")

2.3 Grundsätze der Leistungsbewertung und Leistungsrückmeldung

Die Fachkonferenz hat im Einklang mit dem entsprechenden schulbezogenen Konzept ein Leistungskonzept über die Grundsätze zur Leistungsbewertung und Leistungsrückmeldung beschlossen, das Eltern, Schülerinnen und Schülern sowie Lehrkräften transparent über die Schulhomepage zur Verfügung steht.

2.4 Lehr- und Lernmittel

Lehrwerke, die an Schülerinnen und Schüler für den ständigen Gebrauch ausgeliehen werden:

• Klasse 6: Impulse Physik 1

• Klassen 8-10: Impulse Physik 2

Weitere Quellen, Hinweise und Hilfen zum Unterricht

Plattformen für Unterrichtsmaterialien und digitale Instrumente:

Nr.	URL / Quellenangabe	Kurzbeschreibung des Inhalts / der Quelle
1	http://www.mabo-physik.de/index.html	Simulationen zu allen Themenbereichen der Physik
2	http://www.leifiphysik.de	Aufgaben, Versuch, Simulationen etc. zu allen Themenbereichen
3	http://www.schule- bw.de/unterricht/faecher/physik/	Fachbereich Physik des Landesbildungsservers Baden-Württemberg
4	https://www.howtosmile.org/topics	Digitale Bibliothek mit Freihandexperimenten, Simulationen etc. diverser Museen der USA
5	http://phyphox.org/de/home-de	phyphox ist eine sehr umfangreiche App mit vielen Messmöglichkeiten und guten Messergebnissen. Sie bietet vielfältige Einsatzmöglichkeiten im Physikunterricht. Sie läuft auf Smartphones unter IOS und Android und wurde an der RWTH Aachen entwickelt.
6	http://www.viananet.de/	Videoanalyse von Bewegungen
7	https://www.planet-schule.de	Simulationen, Erklärvideos,
8	https://phet.colorado.edu/de/simulations/category/physics	Simulationen

3 Entscheidungen zu fach- oder unterrichtsübergreifenden Fragen

Die drei naturwissenschaftlichen Fächer beinhalten viele inhaltliche und methodische Gemeinsamkeiten, aber auch einige Unterschiede, die für ein tieferes fachliches Verständnis genutzt werden können. Synergien beim Aufgreifen von Konzepten, die schon in einem anderen Fach angelegt wurden, nützen dem Lehren, weil nicht alles von Grund auf neu unterrichtet werden muss und unnötige Redundanzen vermieden werden. Es unterstützt aber auch nachhaltiges Lernen, indem es Gelerntes immer wieder aufgreift und in anderen Kontexten vertieft und weiter ausdifferenziert. Es wird dabei klar, dass Gelerntes in ganz verschiedenen Zusammenhängen anwendbar ist und Bedeutung besitzt. Verständnis wird auch dadurch gefördert, dass man Unterschiede in den Sichtweisen der Fächer herausarbeitet und dadurch die Eigenheiten eines Konzepts deutlich werden lässt.

Zusammenarbeit mit anderen Fächern

Die schulinternen Lehrpläne und der Unterricht in den naturwissenschaftlichen Fächern sollen den Schülerinnen und Schülern aufzeigen, dass bestimmte Konzepte und Begriffe in den verschiedenen Fächern aus unterschiedlicher Perspektive beleuchtet, in ihrer Gesamtheit aber gerade durch diese ergänzende Betrachtungsweise präziser verstanden werden können. Dazu gehört beispielsweise der Energiebegriff, der in allen Fächern eine bedeutende Rolle spielt.

Im Kapitel 2.1. ist jeweils bei den einzelnen Unterrichtsvorhaben angegeben, welche Beiträge die Physik zur Klärung solcher Konzepte auch für die Fächer Biologie und Chemie leisten kann, oder aber in welchen Fällen in Physik Ergebnisse der anderen Fächern aufgegriffen und weitergeführt werden. Eine jährlich stattfindende gemeinsame Konferenz aller Kolleginnen und Kollegen der naturwissenschaftlichen Fächer ermöglicht Absprachen für eine Zusammenarbeit der Fächer und klärt die dabei auftretenden Probleme. Bei der Nutzung von Synergien stehen auch Kompetenzen, die das naturwissenschaftliche Arbeiten betreffen, im Fokus. Um diese Kompetenzen bei den Schülerinnen und Schülern gezielt und umfassend zu entwickeln, werden gemeinsame Vereinbarungen bezüglich des hypothesengeleiteten Experimentierens (Formulierung von Fragestellungen, Aufstellen von Hypothesen, Planung, Durchführung und Auswerten von Experimenten, Fehlerdiskussion), des Protokollierens von Experimenten (gemeinsame Protokollvorlage), des Auswertens von Diagrammen und des Verhaltens in den Fachräumen (gemeinsame Sicherheitsbelehrung) getroffen. Damit die hier erworbenen Kompetenzen fächerübergreifend angewandt werden können, ist es wichtig, sie im Unterricht explizit zu thematisieren und entsprechende Verfahren als Regelwissen festzuhalten.

Am Tag der offenen Tür präsentieren sich die MINT-Fächer Mathematik, Informatik, Physik, Biologie und Chemie mit einem gemeinsamen Programm. Mit einem freien Experimentierangebot in den Naturwissenschaften können die Grundschüler und -schülerinnen einfache Experimente durchführen und so einen Einblick in naturwissenschaftliche Arbeitsweisen gewinnen.

Methodenlernen

In den MINT-Kursen wird anwendungsbezogen und projektbezogen das methodische Lernen im MINT-bereich vertieft. Außerdem beteiligen sich über die einzelnen Klassenstufen verteilt alle Fächer an der Vermittlung einzelner Methodenkompetenzen. Die naturwissenschaftlichen Fächer greifen vorhandene Kompetenzen auf und entwickeln sie weiter, wobei fachliche Spezifika und besondere Anforderungen herausgearbeitet werden (z.B. bei Fachtexten, Protokollen, Erklärungen, Präsentationen, Argumentationen usw.).

4 Qualitätssicherung und Evaluation

Maßnahmen der fachlichen Qualitätssicherung

Das Fachkollegium überprüft kontinuierlich, inwieweit die im schulinternen Lehrplan vereinbarten Maßnahmen zum Erreichen der im Kernlehrplan vorgegebenen Ziele geeignet sind. Dazu dienen beispielsweise auch der regelmäßige Austausch sowie die gemeinsame Konzeption von Unterrichtsmaterialien, welche hierdurch mehrfach erprobt und bezüglich ihrer Wirksamkeit beurteilt werden. Kolleginnen und Kollegen der Fachschaft (ggf. auch die gesamte Fachschaft) nehmen regelmäßig an Fortbildungen teil, um fachliches Wissen zu aktualisieren und pädagogische sowie didaktische Handlungsalternativen zu entwickeln. Zudem werden die Erkenntnisse und Materialien aus fachdidaktischen Fortbildungen und Implementationen zeitnah in der Fachgruppe vorgestellt und für alle verfügbar gemacht. Feedback von Schülerinnen und Schülern wird als wichtige Informationsquelle zur Qualitätsentwicklung des Unterrichts angesehen. Sie sollen deshalb Gelegenheit bekommen, die Qualität des Unterrichts zu evaluieren. Dafür kann das Online-Angebot SEFU (Schüler als Experten für Unterricht) genutzt werden (www.sefu-online.de).

Überarbeitungs- und Planungsprozess

Der schulinterne Lehrplan ist als "dynamisches Dokument" zu sehen. Dementsprechend sind die dort getroffenen Absprachen stetig zu überprüfen, um ggf. Modifikationen vornehmen zu können. Die Fachschaft trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches bei.

Eine Evaluation dient dazu, mögliche Probleme und einen entsprechenden Handlungsbedarf in der fachlichen Arbeit festzustellen und zu dokumentieren. In den Dienstbesprechungen der Fachgruppe werden die Erfahrungen des vorangehenden Schuljahres ausgetauscht, ausgewertet und diskutiert sowie eventuell notwendige Konsequenzen formuliert. Eine systematische Abfrage kann als Instrument einer solchen Bilanzierung genutzt werden. Nach der Evaluation finden sich die Jahrgangsstufenteams zusammen und arbeiten die Änderungsvorschläge für den schulinternen Lehrplan ein. Insbesondere verständigen sie sich über alternative Materialien, Kontexte und die Zeitkontingente der einzelnen Unterrichtsvorhaben. Die Ergebnisse dienen der/dem Fachvorsitzenden zur Rückmeldung an die Schulleitung und u.a. an den/die Fortbildungsbeauftragte, außerdem sollen wesentliche Tagesordnungspunkte und Beschlussvorlagen der Fachkonferenz daraus abgeleitet werden.